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Abstract

A simple model for optical and thermal properties of two-component biological tissues is proposed as applied to

studies of thermal fields under external illumination. The model comprises a small number of varying input parameters

to enable one to find all the optical characteristics required to compute light fields in tissue and to state the thermal

source function. Thermal parameters of tissues determining heat transfer in a two-component medium are calculated

with accounting for heat exchange conditions between the components and at the interface with various external media.

A set of heat conduction equations is stated for the two-component medium simulating biological tissues. Its analytical

solution is derived. Spatial distributions of the fluence rate and temperature over the tissue depth are investigated at

varying time moments after the irradiation by a short light pulse. Localized absorption of light by blood vessels and its

effect on optical parameters of the medium, more intense heating of blood as compared with its surrounding (basic)

tissue and heat exchange between the blood and tissue, as well as heat transfer at the interface with different envi-

ronments are taken into account. The solutions are derived via characteristic times of thermal processes to enable one to

easy and vividly evaluate the features in tissue heating as well as the effects of optical and thermal parameters on

temperature distributions of the components. The calculations are illustrated by examples.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

A problem on biological tissue heating by external

illumination is scientifically and practically interesting

for various fields of medicine, physiology, laser physics

and engineering and their applications, for protection

from extreme light exposures, etc. To this end, it is

important to have an analytical engineering instrument

to estimate temperature regime in a medium enabling

one to study general relations of spatial and temporal

heat distributions and effects of characteristic parame-

ters on light and thermal fields. It is just the objective

of this paper. The problem of light thermal action on

tissues is reduced to the construction of a model for

optical and thermal characteristics of the medium on

the base of the tissue structure and to the solution of

radiation and heat transfer equations with using the

said characteristics as inputs to evaluate light and

thermal fields.

2. Structural model of biological tissues

Let tissue be a two-component medium composing of

the tissue itself (bloodless basic tissue) and blood vessels

randomly distributed over it (all the capillary orienta-

tions are equally probable and blood velocities are the

same). Assume that the medium is macroscopically

uniform in the optical and thermal senses and its prop-

erties do not depend on spatial coordinates. This sim-

plifying assumption is made to do not complicate the

problem by introducing a lot of additional parameters

that, on the one hand, are known only approximately in

many cases to be estimated from rather rough consid-

erations and, on the other hand, often have small effects

on light and thermal regimes, but make it essentially

difficult to vividly present final results. Suppose further

that blood vessels (capillaries) have constant diameter

d ¼ 2:5–10 lm and length l of a capillary to its bend is*Corresponding author.
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much larger than d. Such a vessel element can be rep-

resented by a long cylinder. Besides, let tissue properties

be independent of light energy, i.e. external irradiation

does not lead to any physical, chemical, phase or other

changes in the tissue. So the varying structural para-

meters of the model are d and vessel volume content CV

equal to a volume fraction of the medium occupied by

the vessels. The values of CV range from 0.01 to 0.1 to

cover roughly the properties of normal and pathological

tissues.

3. Optical characteristics of tissues

Light transfer through a scattering and absorbing

medium is determined by its structural or geometrical

parameters and by three phenomenological characteris-

tics, namely by absorption k and scattering s0 coefficients

and by phase function of a unit volume [1].

Due to high turbidity of tissues, one often uses the

asymptotic approximation of the radiative transfer the-

ory [2] comprising not three, but two optical parameters,

Nomenclature

A coefficient from Eqs. (22) and (23)

c specific heat

CV volume fraction of blood vessels

d mean diameter of a capillary

erfcðxÞ complementary error function, 1� ð2=
ffiffiffi
p

p
ÞR x

0
expð�y2Þdy

E fluence rate

f volume fraction of hemoglobin in erythro-

cytes

F auxiliary function from Eqs. (22) and (23)

F1 auxiliary function from Eqs. (22) and (23)

F2 auxiliary function from Eq (33)

G hematocrit

Gr Grashoff number

h heat transfer parameter at the interface be-

tween tissue and its environment, H=j
H heat transfer coefficient at the interface be-

tween tissue and its environment

Ip modified Bessel function of p order

k absorption coefficient, cm�1

l mean length of a capillary

Nu Nusselt number

OD blood oxygenation degree

Pe Peclet number

Pr Prandtl criterion

r1 light reflection coefficient of tissue surface

r2 light diffuse reflection coefficient

R light reflection coefficient of tissue layer

Re Reynolds number

Q heat quantity

s effective scattering coefficient, s0ð1� �llÞ
s0 scattering coefficient

S thermal heat source function due to external

illumination

t time after illumination

T temperature

U thermal heat source function due to human

organism action

w characteristic size of light spot at the en-

trance to medium

W auxiliary function from Eqs. (8) and (9)

X characteristic size of a problem

Y auxiliary function from Eq. (17)

z depth

z0 light penetration depth

Greek symbols

a parameter of heat exchange between blood

and basic tissue

a1 factor of heat exchange between blood and

basic tissue, a=½CVð1� CVÞ�
b depth extinction coefficient,

ffiffiffiffiffiffiffi
3ke

p

d delta pulse

e effective extinction coefficient, cm�1, e0ð1� gÞ
e0 extinction coefficient, k þ s0

u light incidence angle

j thermal conductivity

k light wavelength, nm

�ll mean cosine of phase function

m kinematic viscosity

g thermal diffusivity, j=ðcqÞ
q density

s characteristic time of a thermal process

v effective absorption diameter of a capillary,

k2pd=4

Subscripts

0 initial time moment

1 basic tissue

2 blood

3 environmental medium

b background

c convection

h heat transfer to environment

r radiation

w radial heat transfer

a heat exchange between blood and basic tis-

sue

g depth heat transfer

Superscripts

max maximal


 ‘‘sieve’’ effect
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namely k and effective extinction coefficient e ¼
e0ð1� �llÞ, where e0 ¼ k þ s0, �ll is the mean cosine of phase

function. According to the above structural model, one

needs to know these two characteristics individually for

basic tissue and blood. Then the resulting coefficients

can be calculated by formulas (here and below sub-

scripts 1 and 2 refer to tissue and blood, respectively):

k ¼ ð1� CVÞk1 þ CVk2; ð1Þ

e ¼ ð1� CVÞe01 þ CVe02
ð1� CVÞs01 þ CVs02

½ð1� CVÞs1 þ CVs2�; ð2Þ

where s1;2 ¼ s01;2ð1� �ll1;2Þ, or under the assumption of

k1;2 � s01;2

e ¼ ð1� CVÞe1 þ CVe2: ð3Þ

Let the said two-parameter spectral model kðkÞ and

eðkÞ be constructed. Publications usually give data on k
and e values typical for different tissues with varying

vessel volume contents. To solve the optical problem (to

evaluate light field), these data are sufficient. However,

the thermal regime of individual tissue components de-

pends highly on CV owing to their different absorption.

Therefore, the model should include spectra k1ðkÞ, k2ðkÞ
and vessel content as a varying parameter. We believe

that it is most convenient for the problem studied to use

model [3] based on thoroughly calibrated measurements

and comparisons with other experiments. This model

represents k1 as a sum of background absorption k1b and

that of melanin k1m as applied to skin. At this stage, we

neglect by k1m values. The following approximation for

k1b is proposed

k1b ½cm�1� ¼ 0:244þ 85:4 exp

�
� k ½nm� � 154

66:2

�
: ð4Þ

Effective scattering coefficient s1 was computed [3] by

relations similar to the Mie formulas, which gave scat-

tering characteristics s1Mie of long cylinders simulating

tissue fibers and Rayleigh coefficients s1R of small (with

diameter of about 100 nm) spherical inhomogeneities.

The coefficients were approximated by the formulas:

s1Mie ½cm�1� ¼ 2� 105k ½nm��1:5
;

s1R ½cm�1� ¼ 2� 1012k ½nm��4
; s1 ¼ s1Mie þ s1R: ð5Þ

Spectra k1ðkÞ and e1ðkÞ calculated by Eqs. (4) and (5)

are given in Table 1 (columns 2 and 3).

Optical properties of blood are well experimentally

studied in the literature. The main absorbing compo-

nents in spectral range 400–850 nm are oxy-HbO2 and

deoxyhemoglobin Hb. Normal blood contains other

hemoglobin forms (glycated, carboxy-, methemoglobin)

in small concentrations, so their absorption can be ne-

glected. By setting hematocrit G (volume content of

erythrocytes in blood), volume fraction f of hemoglobin

in erythrocytes, and blood oxygenation degree OD, one

can construct spectra k2 ¼ Gf ½ODkHbO2
þ ð1�ODÞkHb�

on the base of known absorption of HbO2 and Hb(kHbO2

and kHb). We use data [4,5] recalculated to G ¼ 0:4,
f ¼ 0:25, and OD ¼ 0:97 as such model spectral de-

pendencies. Column 4 of Table 1 gives the absorption

coefficients. Effective spectral extinction coefficient e2ðkÞ
(column 5) as a model one was taken from [4,5]. The

comparison of the data of Table 1 with published ones

[3,6–9] shows their good agreement. So the data of Table

1 will be used below to compute light and thermal fields.

From a physical viewpoint, the additive sum of the

absorption coefficients of Eq. (1) means uniform aver-

aging of the absorbing components over the whole unit

volume of the medium. Meanwhile, highly absorbing

blood has small specific volume (small volume content)

as pointed out above. This suggests an idea that there

can occur a ‘‘sieve’’ (or ‘‘non-absorbing holes’’) effect

[10–12], when weakly absorbing portions will transmit a

lot of light to provide a larger total transmission than it

follows from the uniform absorptivity of a unit volume.

In this case, the absorption coefficient [13]

k
2 ¼ CVk2½1� expð�vÞ�=v; ð6Þ

Table 1

Spectral absorption k [cm�1] and effective extinction e [cm�1] coefficients of basic tissue and blood according to the proposed model

k, nm Tissue Blood

k1 e1 k2 e2

400 2.32 105 857 10

450 1.22 70.9 286 7.85

500 0.7 50.6 100 7.43

550 0.46 37.8 200 8.57

600 0.345 29.4 12 8.93

650 0.29 23.6 2.07 9

700 0.266 19.4 1.43 8.57

750 0.254 16.3 1.7 8.1

800 0.249 14 3.15 7.6

850 0.248 12.1 3.9 7.27
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where v ¼ k2pd=4. When basic tissue surrounding ves-

sels absorb light too, the resulting absorption coefficient

is k
 ¼ k
1 þ k
2 , where k
1 ¼ ð1� CVÞk1 is the absorption

coefficient of the surrounding medium. If one assumes

that light scattering takes place on inhomogeneities of

the surrounding medium only, then the scattering coef-

ficient of a unit volume is s
 ¼ s
1 ¼ s01, where s
1 and s01
are the scattering coefficient of a unit volume and av-

erage scattering coefficient, respectively. Using k2 values

from Table 1, one gets factors ½1� expð�vÞ�=v ¼ 0:728,
0.962, 0.995, and 1 at d ¼ 10 lm for k ¼ 400, 500, 600,

and 700 nm, respectively, and 0.967; 0.996; 1, and 1 at

d ¼ 1 lm. So this effect is essential in the blue spectral

range for rather large capillaries, when one should use

Eq. (6) to calculate k2 in Eq. (1) rather than take its

values from, for example, a table of the optical charac-

teristics.

4. Thermal characteristics of tissues

The characteristics include specific heat c, density q,
thermal conductivity j or thermal diffusivity g ¼ j=ðcqÞ
of the medium, parameters of heat exchange between

individual tissue components a and at the interface h
with an environmental medium. Each of these quantities

depends on many factors, such as tissue kind, physio-

logical conditions of an organism, parameters of the

environment, etc. So these dependencies are not clearly

defined and non-analytical. This paper has the objective

to derive simple and physically substantiated estimations

of the said characteristics from general statements of the

thermal physics, to compare them with published data,

and then to introduce the estimations into the analytical

scheme of studying the thermal fields.

We consider here biological tissues with high fluid

content (75–90%) having the properties close to water

[14]. So let below cq ¼ 4:2� 106 J/(m3 K), j ¼ 0:6 J/

(mK s), g ¼ 1:4� 10�7 m2/s as the corresponding char-

acteristics of water without the subscript typical of the

component. We do not know the theoretical estimations

of the h and a parameters derived from the general

viewpoints of the thermal physics as applied to biolog-

ical tissues. These quantities will be investigated below.

Heat exchange in an organism occurs due to the

thermal conductivity and blood motion along vessels. As

noted above, the assumption on the chaotic distribution

of capillaries has been accepted. Under the external ir-

radiation, blood temperature is different at different

points. At the first glance, it could seem that there is an

additional source of heat transfer due to the random

blood motion over tissue similarly to the thermal con-

ductivity. However, from the general expression of the

thermal balance or from the usual heat transfer equation

at no directed velocity component, it follows that such

an additional source is equal to zero.

Consider first the system of blood vessels––basic tis-

sue. The conception of parameter a follows from the

approximate expression for heat quantity Q transferred

by blood according to the Newton law [15] for convec-

tive heat losses:

Q ¼ cqaðT 2 � T 1Þ; ð7Þ

where T 1 and T 2 are the temperature values of the basic

tissue and blood averaged over a unit volume. Compare

the heat transfer from vessels to basic tissue due to the

convection and thermal conductivity. For the estima-

tions, consider the heat exchange between moving he-

ated blood (water) in a cylindrical vessel and colder

external medium (water too). The influence of the walls

will be neglected. To this end, calculate the Peclet

number Pe ¼ RePr, where Re ¼ v2X=m, the Reynolds

number; v2, the perfusion rate; X ¼ d, the characteristic

size of the problem; m, the kinematic viscosity of the

moving medium (blood in our case); Pr ¼ m=g, the Pra-

ndtl criterion. As known [15,16], the molecular thermal

conductivity dominates at Pe � 1 and the convection

does at the opposite inequality. If v2 ¼ 10�3 m/s and

d ¼ 5� 10�6 m (typical values for blood), one gets

Pe ¼ 3:5� 10�2 � 1. Therefore, the convection mecha-

nism can be neglected under heat exchange between

capillary blood and its surrounding tissue.

Heat exchange under the action of the molecular

thermal conductivity only can be described more strictly

than Eq. (7) to therefore estimate a. We will start from a

set of heat transfer equations for heated cylindrical

vessels and colder surrounding tissue. Then the solution

[17] for average temperatures has the form

T 1 ¼ eTT10 þ CVðeTT20 � eTT10ÞW ðtÞ; ð8Þ

T 2 ¼ eTT20 � ð1� CVÞðeTT20 � eTT10ÞW ðtÞ; ð9Þ

where eTT10 and eTT20 are the initial tissue and blood tem-

peratures due to, for example, irradiation by a d light

pulse

W ðtÞ ¼ expð�t0=tÞ½I0ðt0=tÞ þ I1ðt0=tÞ�; ð10Þ

t0 ¼ d2=ð8gÞ, I0 and I1 are the modified Bessel functions

of the zero and first order, respectively.

If the heat exchange is described via Q of Eq. (7),

then one has

T 1 ¼ eTT10 þ CVðeTT20 � eTT10Þ½1� expð�a1tÞ�; ð11Þ

T 2 ¼ eTT20 � ð1� CVÞðeTT20 � eTT10Þ½1� expð�a1tÞ�; ð12Þ

where a1 ¼ a=½CVð1� CVÞ�. By comparing Eqs. (11) and

(12) with Eqs. (8) and (9), it is seen that in Eqs. (11) and

(12), approximately accounting the heat exchange, the

exact function W ðtÞ is replaced by its estimation

1� expð�a1tÞ. Compare them. One can see from Eqs.

(9) and (12) that functions 1� W ðtÞ and expð�a1tÞ are
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equal to the temporal changes in the relative tempera-

ture of capillaries T 0
2 ¼ ðT2 � eTT20 � Tef0Þ=½ð1� CVÞ�

ðeTT20 � eTT10Þ�, where Tef0 ¼ ð1� CVÞeTT10 þ CV
eTT20 is the

mean temperature of a unit volume at the initial time

moment. The value of a1t0 can be fitted so that the both

functions are the same for the relative temperature drop

by e ¼ 2:7 times. It turns out that in this case

t=t0 ¼ 0:82 ¼ 1=ða1t0Þ. It further follows that

a1 ¼ 9:7g=d2 ð13Þ

or

a ¼ 9:7gCVð1� CVÞ=d2: ð14Þ

The use of Eq. (14) to estimate the heat exchange

between the basic tissue and vessels appropriately de-

scribes the changes in T 2 (and T 1) up to t=t0  0:15,
when the vessel temperature decreases to 17% of its

maximal value at t ¼ 0 [17]. For t=t0 > 2, when the

temperature equalization is essentially completed, ap-

proximate Eq. (12) gives more rapid decrease in T 2.

Therefore, one can practically use both Eqs. (11) and

(12) and Eqs. (8) and (9).

Consider now parameter h ¼ H=j, where H is the

heat transfer coefficient and j is the tissue thermal

conductivity. It can be represented as h ¼ hc þ hr, where

the first term approximately treats the common action of

the heat conductivity and convection and the second one

does the radiative heat exchange at moderate differences

between T 1, T 2, and temperature T3 of an external me-

dium [18]. Estimate below the effectiveness of the said

mechanisms for two cases, namely when tissue is heated

in air or water. As before, calculate the Peclet number

Pe ¼ v3X=g3, where v3 is the velocity of the moving ex-

ternal medium due to the free convection, g3 is its

thermal diffusivity, X is the diameter of the irradiating

light spot (characteristic size of the problem for a flat

surface). By using [16] and thermal parameters of the

two external media [19,20], one can show that the

maximal velocity of a medium surrounding a flat surface

is v3 ¼ 0:1ðX DT Þ0:5 and 0:043ðX DT Þ0:5 for air and water,

respectively, where X [m] and DT [K] is the temperature

difference between the tissue surface and external me-

dium. Assuming X ¼ 5� 10�3 m and DT ¼ 10 K gives

Pe  5:5 and 350 for air and water, respectively. This

tells that one should essentially regard only convective

motion under the heat exchange of a flat surface.

Heat transfer parameter hc depends on several di-

mensionless similarity criteria or numbers, and its spe-

cific functional form is determined by a flow type

(laminar or turbulent) near a heated surface. A simple

criterion for laminar flow is used in [21], namely

GrPr < 107. The Grashoff number [16,21] is Gr ¼
gc3 DTX 3=m2

3, where g is the gravitational acceleration, c3

is the volume expansion coefficient of the external

medium, and m3 is its kinematic viscosity. This criterion

is easily seen to be valid in the problem under consid-

eration for typical values of DT and X .

Now estimate directly the heat transfer coefficients.

As shown in [16,21], there occurs the following relation

between the Nusselt Nu and Grashoff numbers during

free convection and laminar flow near a vertical heated

surface

Nu ¼ HX
j3

¼ ½0:508Pr0:5ð0:952þ PrÞ�0:25�Gr0:25; ð15Þ

where j3 is the thermal conductivity of a medium con-

tacting with tissue. By using Eq. (15), one gets

hc ¼
H
j
¼ j3

jX
½0:508Pr0:5ð0:952þ PrÞ�0:25�Gr0:25: ð16Þ

Let X ¼ 5� 10�3 m. Then for air environment at

DT ¼ 10 and 100 K, hc ¼ 11:5 and 20.5 m�1, respec-

tively. For water, hc values increase by about 180 times.

When the surface is horizontal, the estimations give

approximately the same hc values [21], if the heated side

is up, and twofold lower, if it is down.

For radiative heat exchange [22], hr ¼ 6:2DDT=j [1/

m], where D is the blackness, to give hr values of the

same order as hc for air. For water, hr � hc and one can

neglect by hr in this case.

The above estimations of the heat transfer parameter

agree with various literature data [22–24].

By summarizing, one can say that the range of pa-

rameter h (in m�1) is 5–50 for environmental air and

103–104 for water. Under power water flows, h ¼ 104–

105 m�1. This should be taken into account while com-

puting the kinetics of thermal processes.

5. Light propagation through tissues

Light propagation through biological tissues was

studied in a lot of publications. The whole issues of

Applied Optics [25–27] and JOSA [28] were devoted to

different aspects of the problem. One usually uses the

asymptotic theory [2], two-flux [2,29,30] and diffusion

approximations [2,30–32], and their various modifica-

tions. The review of the models to describe light fields

and light absorption by biological tissues as applied to

the problem of their heating under external irradiation

was given in [30]. Numerical computations often pub-

lished in the references for rather simple situations are

not justified always, because there are reliable and sub-

stantially accurate analytical approaches, which will be

used in this paper.

Tissue is a highly turbid medium. The light penetra-

tion depth is rather small, so that the width of an irra-

diating light spot can be regarded as being much larger

than the illuminated depth of the medium. From the

mathematical viewpoint, this corresponds to the irradi-

ation of an optically thick medium by an infinitely wide
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light spot, when the light field structure in the transverse

spot section remains constant. The light will be assumed

as monochromatic one. To investigate light field in a

tissue, we use the well-defined asymptotic approxima-

tion of the radiative transfer theory [2].

It is shown in [33,34] that the fluence rate at depth z is
the following under illumination of an infinitely thick

plane-parallel turbid layer

EðzÞ ¼ E0ð1� r1Þð1þ RÞ expð�bzÞ: ð17Þ

Here r1 is the reflection coefficient of the tissue sur-

face, R ¼ expð�Y Þ is the reflection coefficient of the

tissue depth, and b ¼
ffiffiffiffiffiffiffi
3ke

p
is the depth extinction co-

efficient. Under directed illumination with incidence

angle u by the surface normal, Y ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ð3eÞ

p
�

½ð3=7Þð1þ 2 cosuÞ þ r2=ð1� r2Þ�, and under diffuse il-

lumination Y ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ð3eÞ

p
=ð1� r2Þ, where r2 is the dif-

fuse reflectance at the interface with an external medium

for light incidence from the tissue interior. If the external

medium is air, one gets Y ¼ 9:3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ð3eÞ

p
at r2 ¼ 0:51 (for

tissue refractive index 1.33) and u ¼ 0, and Y ¼
8:1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ð3eÞ

p
for the diffuse illumination. When the

external medium is water (r2 ¼ 0), one has Y ¼
5:1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ð3eÞ

p
and Y ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ð3eÞ

p
correspondingly to the

above two cases. Under the illumination by a d-pulse, E0

of Eq. (17) is the surface energy density of the pulse at

the entrance into the medium.

We will not study the structure of light fields ac-

cording to Eq. (17) in detail. Note only that the main

parameters are reflection coefficient R and depth ex-

tinction coefficient. The latter characterizes the depth

attenuation rate of the fluence rate. The value of

z0 ¼ 1=b is the depth, where the fluence rate decreases

by e ¼ 2:7 times. Table 2 gives the values of R (for

tissue in air at u ¼ 0), b, and z0 for blood volume

contents CV ¼ 0:01 and 0.1. One can see the well-

known result [6] that the reflection coefficient of bi-

ological tissues increases in the long-wavelength

spectral region. The higher the blood volume content,

the lower the reflectance at any wavelength consid-

ered. Penetration depth z0 changes from fractions to

some mm with wavelength increasing and CV de-

creasing.

The approach to the ‘‘sieve’’ effect leading to de-

creasing absorptivity of tissues for a number of cases

and, as a result, to increasing reflectivity and transmit-

tivity of a turbid layer was schematically described

above. Table 2 estimates this effect as applied to char-

acteristics b, z0, and R at CV ¼ 0:01 and 0.1 and large

enough capillary diameter d ¼ 40 lm. The model values

of k1, k2, and e were used. The values of b, z0, and R
correspond to the calculation of the absorption coeffi-

cient by Eq. (1), those of b
, z
0, and R
 do with ac-

counting for Eq. (6). Table 2 shows that the ‘‘sieve’’

effect even for large capillaries occurs only in the short-

wavelength spectral region (k ¼ 400–450 nm). Decreas-

ing d makes the effect negligible.

6. Statement of the heat transfer equations and their

solution

Various numerical procedures are developed to

solve the heat transfer equation for biological tissues.

The mains of them are the finite-difference [35–37] and

finite-element [38,39] schemes and the Green function

method [22,40,41]. These methods provide very ample

facilities for the investigations to enable one to com-

pute thermal fields for complex tissue geometry in-

cluding multi-layer structure [30,40,42], presence of

Table 2

Optical characteristics of tissue and maximal temperatures of blood

k, nm k, cm�1 b, mm�1 z0, mm R, % k
, cm�1 b
, mm�1 z
0, mm R
, % DTmax
2 , K DT 
max

2 , K

CV ¼ 0:01

400 10.9 5.85 0.171 17.9 5.26 4.07 0.246 30.2 47.2 52.1

450 4.07 2.94 0.34 27.8 3.1 2.57 0.39 32.7 17.1 17.7

500 1.69 1.6 0.624 37.6 1.55 1.53 0.652 39.2 6.43 6.5

550 2.46 1.67 0.599 25.4 1.94 1.48 0.674 29.8 11.8 12.1

600 0.462 0.638 1.57 51.2 0.459 0.636 1.57 51.2 0.847 0.848

700 0.278 0.402 2.49 52.7 0.278 0.402 2.49 52.7 0.102 0.102

800 0.278 0.342 2.93 47.1 0.278 0.342 2.93 47.1 0.216 0.216

CV ¼ 0:1

400 87.8 16.6 0.06 0.75 31.8 10 0.1 5.3 40.3 42.1

450 29.7 7.95 0.126 3.1 20 6.52 0.153 5.8 13.8 14.1

500 10.6 4.02 0.249 8.6 9.2 3.74 0.267 10.2 5.07 5.15

550 20.4 4.81 0.208 2 15.3 4.16 0.24 3.3 9.52 9.67

600 1.51 1.15 0.866 29.7 1.49 1.15 0.873 30 0.727 0.729

700 0.382 0.472 2.12 47.2 0.382 0.472 2.12 47.2 0.098 0.098

800 0.539 0.476 2.1 35 0.538 0.475 2.11 35.1 0.199 0.199
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localized blood vessels [42–44], injury of tissue by ra-

diation [30], water evaporation, changes in chemical

reaction rates, and other phase transformations in tis-

sues [30,43], radial heat spreading under irradiation by

a narrow light beam [30,36,40,43], etc. Besides the said

theoretical studies, there were performed a lot of ex-

periments [45–53] directed, first of all, to the provisions

of medical applications. One should note another area

of problems related with the investigations of internal

temperature fields in blood vessels [42,54]. In spite of

the highly developed mathematical or, rather, com-

puter means to solve different problems on heat

transfer through biological tissues, numerical methods

often mask individual effects of the parameters defining

light and heat propagation and, finally, spatial–tem-

poral distributions of the temperature. Accounting for

multiple parameters and high variability of the prob-

lems on studying the thermal regime, it is highly de-

sirable to have at hands an engineering instrument

permitting one to do not ‘‘stick’’ in mathematical

cumbersomenesses to get physically transparent and

practically valuable and visible results. Such an in-

strument would also enable one to a prior expose es-

sential and inessential parameters to thereby create

prerequisites for simplifying the applications of the

known numerical procedures while studying delicate

effects. It is just the objective of solving the heat

transfer equations in this paper.

Starting from the energy conservation law, one can

write down the following set of heat transfer equations

for a plane layer of a two-component medium:

cqð1� CVÞ
oT 1

ot
¼ jð1� CVÞ

o2T 1

oz2
þ QðT 1; T 2Þ

þ S1ð1� CVÞ þ Uð1� CVÞ; ð18Þ

cqCV

oT 2

ot
¼ jCV

o2T 2

oz2
� QðT 1; T 2Þ þ S2CV þ UCV: ð19Þ

Here Q is the heat quantity transferred from blood to

its surrounding tissue per unit volume pet unit time, S
and U are the source functions due to the external

irradiation and thermal action of an organism, respec-

tively. Under illumination by a d-pulse, S1;2ðz; tÞ ¼
k1;2EðzÞdðtÞ.

As while considering light propagation through the

medium, Eqs. (18) and (19) do not treat heat outflow to

the dark subsurface regions due to the thermal con-

ductivity. In other words, the above set gives the upper-

bound estimation of the temperature rise under external

irradiation.

A mechanism of organism heat action U providing

temperature T10 ¼ T20  36:6 �C for a normal-state

person under overheating or overcooling is poor studied

from a formal mathematical viewpoint. Source U was

numerically simulated in [23]. Obviously, the number of

input parameters of the model increased very sharply.

So assume initially that U ¼ 0.Set the following initial

T 1ðt ¼ 0; zÞ ¼ T 2ðt ¼ 0; zÞ ¼ T10 ð20Þ

and boundary conditions of tissue heat exchange with an

external medium by the Newton law [22,38]

oT 1;2ðt; z ¼ 0Þ
oz

¼ h½T 1;2ðt; z ¼ 0Þ � T3�; ð21Þ

where T3 is the temperature of the environment. By using

the Laplace transform method [18], one gets the solution

to Eqs. (18) and (19) under the conditions of Eqs. (20)

and (21)

T 1ðt; zÞ ¼ T10 þ
A1F ðt; zÞ

2
� A1F1ðt; z; bÞ

ffiffiffiffi
sg

pffiffiffiffi
sg

p � ffiffiffiffiffi
sh

p þ dT ;

ð22Þ

T 2ðt; zÞ ¼ T20 þ
A2F ðt; zÞ

2
� A2F1ðt; z; bÞ

ffiffiffiffi
sg

pffiffiffiffi
sg

p � ffiffiffiffiffi
sh

p þ dT :

ð23Þ

Here

A1 ¼ A10 expð�t=saÞ þ A0½1� expð�t=saÞ�;
A2 ¼ A20 expð�t=saÞ þ A0½1� expð�t=saÞ� ð24Þ

or

A1 ¼ A10ð1� W Þ þ A0W ;

A2 ¼ A20ð1� W Þ þ A0W ; ð25Þ

if the average temperatures over a unit volume are de-

scribed by Eqs. (11) and (12) or (8) and (9), respectively.

Coefficients A10;20 ¼ k1;2E0ð1� r1Þð1þ RÞ=ðcqÞ give the

temperatures of a subsurface unit volume at the initial

time moment as if the layer would consist of the basic

tissue or blood vessels only. Quantity A0 ¼ ð1� CVÞA10 þ
CVA20 is the temperature of a unit volume of the layer at

z ¼ 0.

dT ¼ ðT3 � T10ÞF1ðt; z; b ¼ 0Þ; ð26Þ

F ðt; zÞ ¼ exp
t
sg

� �
expð
"

� bzÞerfc
ffiffiffiffi
t
sg

s 
� z

2
ffiffiffiffi
tg

p
!

þ expðbzÞerfc
ffiffiffiffi
t
sg

s 
þ z

2
ffiffiffiffi
tg

p
!#

; ð27Þ

F1ðt; z;bÞ ¼ exp
t
sg

� �
expðbzÞerfc

ffiffiffiffi
t
sg

r��
þ z

2
ffiffiffiffi
tg

p
�

� exp
t
sh

� �
exp

zffiffiffiffiffiffiffi
shg

p
� �

erfc

ffiffiffiffiffi
t
sh

r�
þ z

2
ffiffiffiffi
tg

p
��

:

ð28Þ

Parameters sa, sg, and sh have clear physical sense

to be the characteristics of a corresponding process
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provided that the process dominates. Really, sa ¼
d2=ð9:7gÞ is the characteristic time of the temperature

equalization of blood and its surrounding tissue; sg ¼ 1=
ðb2gÞ is the characteristic time of the temperature

equalization over tissue depth due to thermal conduc-

tivity; and sh ¼ 1=ðh2gÞ is the characteristic time of heat

exchange between the tissue surface and environment.

Thus, Eqs. (22)–(28) describe the temperature chan-

ges of the two tissue components under irradiation by a

light d-pulse or the Green function of the corresponding

problem expressed via the characteristic times of the

respective thermal processes. Spatial and temporal

temperature distributions of [55,56] are also expressed

via characteristic times of axial sg and radial sw heat

spreading to simplify the model of heat transfer through

tissues and to generalize the calculations. (As pointed

out above, we neglected sw or assumed that bw � 1,

where w is the spot size at the entrance to the medium.)

However, a number of rough assumptions were made in

[55,56]. According to [55], sg ¼ 0:7=ðb2gÞ to be close to

the stated above. Eqs. (22)–(28) comprise additionally

the characteristic times of other thermal mechanisms,

namely sa of heat exchange between blood and basic

tissue and sh of heat losses through the interface. This

enables us to vividly present the results and easily ana-

lyze them.

We assumed above U ¼ 0. Then according to Eqs.

(22) and (23), T 1 and T 2 tend to be the same as T3 at

t ! 1 to contradict with the reality. It is required to

discard the last term of Eqs. (22) and (23) to provide the

correct asymptotic solution T 1ðt ! 1Þ¼ T 2ðt ! 1Þ ¼
T10. One could believe that the organism thermal source

(U 6¼ 0) would compensate dT in these formulas. It

should be noted that dT value plays an essential role

only when T 1 and T 2 are close to T10, i.e. when the tissue

overheating is disappearing. So the working formulas

for further quantitative calculations are

DT1ðt; zÞ

¼ T 1ðt; zÞ � T10 þ
A1F ðt; zÞ

2
� A1F1ðt; z; bÞ

ffiffiffiffi
sg

pffiffiffiffi
sg

p � ffiffiffiffiffi
sh

p ;

ð29Þ

DT2ðt; zÞ

¼ T 2ðt; zÞ � T20 þ
A2F ðt; zÞ

2
� A2F1ðt; z; bÞ

ffiffiffiffi
sg

pffiffiffiffi
sg

p � ffiffiffiffiffi
sh

p ;

ð30Þ

where DT1 are DT2 the temperature excesses over the

normal temperature.

Even without computations by Eqs. (29) and (30),

one can get the insight into thermal processes in tissues

by evaluating the time parameters sa, sg, and sh.

Characteristic time sa of the temperature equalization

of blood and basic tissue is proportional to d2. So sa

increases rapidly with mean capillary diameter. If d
changes from 2.5 to 40 lm, the sa range is 4.6� 10�6 to

1.2� 10�3 s. Parameter sh / 1=h2. As noted above, h
ranges from 5 to 105 m�1 depending on the environment

and convection kind (free or forced). This corresponds

to the range of sh from 2.9� 105 to 7� 10�4 s. Charac-

teristic time sg / 1=b2, i.e. the more the light absorption,

the faster the temperature would equalize over tissue

depth due to thermal conductivity. Taking into account

possible changes in b given in Table 1, one gets sg values

of about 0.2–60 s. So the widest range is for sh (9 orders

of magnitude), its value can be both greater and less

than sa, and sa � sg always.

Note that initial Eqs. (18) and (19) do not contain

directed perfusion component ~vv2. If v2 6¼ 0, one should

add characteristic time sv ¼ L=v2 (L being the path

length along ~vv2, where temperature changes due to the

perfusion are estimated) to time parameters sa, sg, and

sh. When the velocity vector is almost parallel to the

tissue surface, L is about the light spot diameter. Let

L ¼ 0:01 m and v2 ¼ 10�5 m/s, then sv ¼ 103 s. If the

velocity vector is close to the surface normal, the char-

acteristic value of L will be z0 or some mm depending on

k, and sv is about seconds.

7. Particular cases of Eqs. (29) and (30)

I. At t ¼ 0

DT1;2 ¼ A10;20 expð�bzÞ; ð31Þ

i.e. the spatial distributions of temperature rises of

blood and basic tissue are similar to the distribution

of the fluence rate over depth z.
II. At sh ¼ 1

DT1;2 ¼ A1;2F ðt; zÞ: ð32Þ

III. At sh ¼ 0

DT1;2 ¼ A1;2F2ðt; zÞ; ð33Þ

where

F2ðt; zÞ ¼ exp
t
sg

� �
expð
"

� bzÞerfc
ffiffiffiffi
t
sg

s 
� z

2
ffiffiffiffi
tg

p
!

� expðbzÞerfc
ffiffiffiffi
t
sg

s 
þ z

2
ffiffiffiffi
tg

p
!#

: ð34Þ

IV. At sa ¼ 1, when components 1 and 2 do not inter-

act with each other,

DT1;2 ¼ A10;20

F ðt; zÞ
2

"
� F1ðt; z; bÞ

ffiffiffiffi
sg

pffiffiffiffi
sg

p � ffiffiffiffiffi
sh

p
#
: ð35Þ

V. At sa ¼ 0, when the temperatures of components 1

and 2 equalize in a moment and the medium be-

haves itself as a single-component one,
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DT1;2 ¼ DT1;2

sh¼1

������ � A0 F1ðt; z;bÞ
ffiffiffiffi
sg

pffiffiffiffi
sg

p � ffiffiffiffiffi
sh

p
" #

: ð36Þ

VI. At z ¼ 0

DT1;2 ¼ A1;2 exp

�(
� t

sg

�
erfc

ffiffiffiffi
t
sg

s !

�
ffiffiffiffi
sg

pffiffiffiffi
sg

p � ffiffiffiffiffi
sh

p exp
t
sg

� �
erfc

ffiffiffiffi
t
sg

s !"

� exp
t
sh

� �
erfc

ffiffiffiffiffi
t
sh

r� �#)
ð37Þ

For small time moments, Eq. (37) is

DT1;2 ¼ A1;2 1

"
�

2
ffiffi
t

p
ð ffiffiffiffi

sg
p þ ffiffiffiffiffi

sh
p Þffiffiffiffiffiffiffiffiffi

sgsh
p

#
: ð38Þ

Maximal overheating DTmax
2 of blood occurs at the

first moments after the irradiation by a d-pulse. Let a

pulse laser create E0 of about 2� 103 J/m2 at z ¼ 0. The

values of DTmax
2 and DT 
max

2 calculated by Eq. (31) for

this energy density and various wavelengths with and

without accounting for the ‘‘sieve’’ effect, respectively,

are given in the two last columns of Table 2 for tissue in

air and u ¼ 0, d ¼ 40 lm. The results show that blood is

highly overheated at the first moments after the irradi-

ation. This is especially noticeable in the short-wave-

length spectral range, where the temperature excess over

the normal temperature can achieve several dozens of

degrees. Note that the said maximal temperature values

are computed at the above energy surface density se-

lected for the estimations. At the same time, DTmax
2 and

DT 
max
2 are proportional to E0, i.e. the larger E0 value,

the higher the maximal temperatures. Had the said

overheating lasted for a long time, this would lead to

irreversible destructive changes in tissues. However, it

Fig. 1. Temperature excess of basic tissue DT1 (dashed curves) and blood DT2 (solid) over normal temperature as a function of time

after irradiation for weak (a and c, k ¼ 600 nm, CV ¼ 0:01) and strong (b and d, k ¼ 400 nm, CV ¼ 0:1) absorption at z ¼ 0 (a,b) and

z ¼ z0 ¼ 1:57 (c) and 0.17 mm (d), sh ¼ 1 (curves 1), 7.1 (2), 0.071 (3), and 0.00071 s (4). On the abscissa axis, characteristic times sa

(�), sh (�), and sg (j) are shown.
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will be shown below that the duration of this process is

very small to do not, probably, cause the irreversible

transformations of the organic matter.

8. Features in thermal processes

All the features considered below are obtained at

d ¼ 2:5 lm to correspond to sa ¼ 4:6� 10�6 s as well as

at r1 ¼ 0:02 and E0 ¼ 2� 103 J/m2. Due to small d, the
‘‘sieve’’ effect was neglected. The calculations are per-

formed by Eqs. (29) and (30) with accounting for Eq.

(25). Although the formulas do not contain sa explicitly,

we note its values in view of the approximation of Eq.

(25) by Eq. (24).

First, turn our attention to the influence of sh on the

temperature kinetics at k ¼ 600 nm, CV ¼ 0:01 and

k ¼ 400 nm, CV ¼ 0:1 (Fig. 1). The data are given for

z ¼ 0 and z0. In the case of the weak and strong ab-

sorption, sg values are 17.5 and 0.026 s, respectively.

Fig. 1 shows that even for the weak absorption the

blood temperature rise at the surface can be about 1 K.

On the whole, the temperature effects are small in this

case to be some fractions of a degree or less. At the

strong absorption, the blood temperature can initially

achieve several degree dozens. Although sa ¼ 4:6�
10�6 s, the complete equalization of the blood and

basic tissue temperatures is longer than sa by the two

orders of magnitude. This was qualitatively pointed out

above. With that one can see the enhanced surface

temperature by several degrees up to fractions of a

second. At t < 10�5 s, the temperature transformations

occur only due to the heat exchange between blood and

basic tissue. With that T 2 decreases, but T 1 rises. These

processes are described by coefficients A2 and A1 in Eqs.

(30) and (29). Further, temperatures T 1 and T 2 are

equalized to operate the heat transfer to the external

medium. The smaller sh, the more rapidly the surface

gets cold. The role of sh at some depths becomes more

efficient at larger times than at the surface. Starting

from t > 0:01 s, the thermal conductivity mechanism is

operated, and when sh ¼ 1, the temperature drop of

tissue is due to only heat spreading over the medium

depth.

Fig. 2. Temperature excess of basic tissue DT1 (dashed curves) and blood DT2 (solid) over normal temperature as a function of depth z
for weak (a and c, k ¼ 600 nm, CV ¼ 0:01) and strong (b and d, k ¼ 400 nm, CV ¼ 0:1) absorption at t ¼ 0 (curves 1), 10�5 (2), 0.1 (3),

0.32 (4), and 1 s (5); sh ¼ 4:5� 103 (a,b) and 7.1� 10�4 s (c,d).
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Fig. 2 illustrates DT1;2 as a function of z at different

sh. Value sh ¼ 4:5� 103 s is typical for tissue contacting

with air. This case essentially corresponds to sh ¼ 1 to

be described by Eq. (23). Value sh ¼ 7:1� 10�4 s cor-

responds to power water flow near tissue, and the tem-

perature kinetics is close to Eq. (33). One can see from

Fig. 2 that at t � 7:1� 10�4 s, when the kinetics is not

defined by sh, the temperature dependencies are expo-

nential, what follows from Eqs. (29) and (30) that give

DT1;2 ¼ A10;20 expð�bzÞ expðt=sgÞ: ð39Þ

The differences in the curves are related with heat ex-

change between blood and basic tissue. The exponential

behavior is violated with increasing t stating from small

z. This is owing to the heat transfer action providing the

heat outflow inside the layer. When the outflow rate via

the surface is very high, so that sh � sg, the thermal

conductivity mechanism fails to hold the heat in the

subsurface layer, which gets colder than deeper layers in

some time. With higher absorptivity and lower sh,
thermal conductivity assists to more intense heat trans-

fer inside the medium. At larger depths, the more the

time, the higher the temperature. This follows also from

Eqs. (29) and (30), which are reduced to Eq. (39) at

z ! 1 independent of the parameters of the medium.

Thus, the proposed model for heating biological tis-

sues by a short light pulse enables the thermal fields to

be analytically evaluated with regarding all the param-

eters of the problem. The representation of the solutions

via characteristic times of thermal processes permits one

to estimate essential and inessential factors, to reduce a

number of parameters that should be regarded, and to

thereby simplify the final results. This model will be a

basis for studying temperature distributions over bio-

logical tissues irradiated by a pulse of finite duration as

applied to various medical and biophysical applications.
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